首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10782篇
  免费   2148篇
  国内免费   2810篇
化学   7020篇
晶体学   509篇
力学   1912篇
综合类   131篇
数学   610篇
物理学   5558篇
  2024年   10篇
  2023年   92篇
  2022年   249篇
  2021年   306篇
  2020年   342篇
  2019年   300篇
  2018年   319篇
  2017年   466篇
  2016年   525篇
  2015年   416篇
  2014年   565篇
  2013年   946篇
  2012年   741篇
  2011年   897篇
  2010年   734篇
  2009年   817篇
  2008年   827篇
  2007年   873篇
  2006年   878篇
  2005年   781篇
  2004年   701篇
  2003年   552篇
  2002年   469篇
  2001年   448篇
  2000年   409篇
  1999年   311篇
  1998年   277篇
  1997年   266篇
  1996年   217篇
  1995年   220篇
  1994年   175篇
  1993年   130篇
  1992年   115篇
  1991年   95篇
  1990年   74篇
  1989年   41篇
  1988年   38篇
  1987年   34篇
  1986年   20篇
  1985年   15篇
  1984年   13篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.  相似文献   
62.
采用双光路双靶材脉冲激光沉积(PLD)系统在p-Si衬底上外延生长InGaN薄膜,研究了InGaN薄膜的显微组织结构和n-InGaN/p-Si异质结的电学性能。研究表明,InGaN薄膜为单晶结构,沿[0001]方向择优生长,薄膜表面光滑致密,In的原子含量为35%。霍尔(Hall)效应测试表明In0.35Ga0.65N薄膜呈n型半导体特性,具有高的载流子浓度和迁移率及低的电阻率。I-V曲线分析表明In0.35Ga0.65N/p-Si异质结具有良好的整流特性,在±4 V时的整流比为25,开路电压为1.32 V。In0.35Ga0.65N/p-Si异质结中存在热辅助载流子隧穿和复合隧穿两种电流传输机制。经拟合,得到异质结的反向饱和电流为1.05×10-8 A,势垒高度为0.86 eV,理想因子为6.87。  相似文献   
63.
We demonstrate a novel impedimetric approach providing unprecedented insight into characteristic properties of dielectric thin films covering electrode surfaces. The concept is based on the joint interpretation of electrochemical impedance spectroscopy (EIS) together with dielectrometry (DEM) whose informative value is mutually interconnected. The advantage lies in the synergistic compensation of individual shortcomings adversely affecting conventional impedimetric analysis strategies relying exclusively on either DEM or the traditional EIS approach, which in turn allows a reliable determination of thickness and permittivity values. The versatility of the method proposed is showcased by an in-situ growth-monitoring of a nanoporous, crystalline thin film (HKUST-1) on an interdigitated electrode geometry.  相似文献   
64.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
65.
《Mendeleev Communications》2022,32(3):327-330
Carbon–carbon composites (C/C) were produced from carbon fiber reinforced phthalonitrile (CFRP) matrix composites in a two-step impregnation–carbonization procedure. After graphitization at 1800 °C, the obtained C/C composites demonstrated highly crystalline structure and properties characteristic of composites derived from phenolic matrix CFRP by the industrial procedure: d = 1.73 g cm?3, interlaminar shear strength was 14.1 MPa, compression strength was 139.8 MPa, and coefficient of friction was in the range 0.32–0.34.  相似文献   
66.
The preparation and performance improvement of the spinel coating on the surface of ferritic alloy is of wide interest for its application in the metallic interconnects of the solid oxide fuel cells (SOFCs). The Co Mn2O3 composite coating is prepared on the surface of the Crofer alloy by the composite electrodeposition method. A step-heating thermal conversion process is subsequently used to convert the composite coating into a spinel coating, while a direct-heating process is implemented as the control experiment. Isothermal oxidation tests are then carried out for the prepared samples in order to present the high temperature performance. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and area-specific resistance (ASR) are used to analyze the properties of the matrix and coatings. The experimental results reveal that the coatings by step-heating thermal conversion exhibit better performance of electrical conductivity and oxidation resistance than the coatings by direct-heating process. Furthermore, with the increase of oxidation time, the atomic proportion of Cr element diffusing to the surface of the matrix is maintained at about 3%–4% for the samples with spinel coatings by step heating, which effectively prevent the Cr volatilization in the matrix. The preparation of spinel coatings on the ferritic alloy by composite electrodeposition and step-heating thermal conversion is helpful to stimulate new ideas for the development of reliable and cost-effective metallic interconnect.  相似文献   
67.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
68.
A new star-shaped structure conjugated microporous polymers, poly (2,8,14-tri[4-diphenyl-benzene]-hexaazatrinaphthylene) (PTPA-HATN), was designed and in-situ electrochemically polymerized on the surfaces of FTO electrodes with a directional alignment TiO2 nanorod array to obtain TiO2/PTPA-HATN core-shell nanocomposite films. Compared with the PTPA-HATN film, the TiO2/PTPA-HATN composite film exhibits higher optical contrast and faster response time, with contrast of 57% at 783 nm, coloring time of 3.62 s and discoloring time of 2.55 s (43%, 4.63 s and 4.77 s for PTPA-HATN film, respectively). After 400 cycles, the contrast of nanocomposite film decreased by 28%, while the PTPA-HATN film basically lost its electrochromic properties. A simple three-layer EC prototype device based on TiO2/PTPA-HATN nanocomposite film constructed with hydrogel electrolyte clearly shows color changes at different voltages. On the one hand, the formation of core-shell porous nanostructure of TiO2/PTPA-HATN composite film provides a larger ion doping/de-doping interface, shortening the average diffusion length of ions. On the other hand, the large indented polymer-nanorods contact interface makes it difficult for the polymer to detach from the electrode, thus significantly improving the cyclic stability of the composite film.  相似文献   
69.
《Mendeleev Communications》2022,32(4):520-522
Investigations of nanocomposite thin films based on polyarylene- phthalide, single-walled carbon nanotubes and graphene oxide have been carried out. Using these films as a transport layer, field-effect transistors were assembled and their output and transfer characteristics were measured. The mobility of charge carriers was estimated and the obtained values are as follows: μPAP/GO = 0.020 cm2 V?1 s?1 and μPAP/SWCNT = 0.071 cm2 V?1 s?1.  相似文献   
70.
Novel ternary composite photocatalysts have been successfully prepared by TiO₂ nanofibers, reduced graphene oxide, and CdS nanoparticles (TiO₂/rGO/CdS) by using electrospinning technique with easy chemical methods. The structures and their properties are examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The structural characterization of the composite reveals that pure TiO₂ NFs and CdS NPs crystalline very well and the reduced graphene oxide is tightly composed with TiO₂ NFs and CdS Nps. The photodegradation of methyl orange (MO) under UV light illumination is significantly enhanced compared with that of bare materials. This ternary composite degrades methyl orange within 75 min. The enhanced photocatalytic degradation performance resulted from effective separation of e–h pairs with rGO sheets and also contributed for high rate degradation efficiency. This novel ternary composite has a potential application of wastewater purification and utilization for energy conversions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号